Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hande Petek,^a* Ismet Şenel,^a Olcay Bekircan,^b Erbil Ağar^c and Selami Şaşmaz^d

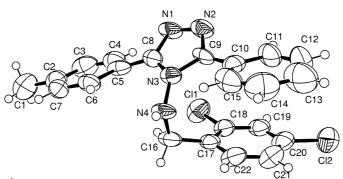
^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, ^bDepartment of Chemistry, Giresun Art and Science Faculty, Karadeniz Teknik University, Giresun, Turkey, ^cOndokuz Mayıs University, Art and Science Faculty, Department of Chemistry, 55139 Samsun, Turkey, and ^dDepartment of Chemistry, Rize Art and Science Faculty, Karadeniz Teknik University, Rize, Turkey

Correspondence e-mail: hpetek@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.010 Å R factor = 0.074 wR factor = 0.133 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{22}H_{18}Cl_2N_4$, displays the characteristic features of 1,2,4-triazole derivatives. There is an N-H···N intermolecular hydrogen bond.


Received 13 April 2004 Accepted 16 April 2004 Online 24 April 2004

Comment

1,2,4-Triazole and its derivatives are starting materials for the synthesis of many heterocycles (Desenko, 1995). Apart from its extensive chemical significance, the 1,2,4-triazole nucleus is also found to be associated with diverse medicinal properties, such as analgesic, anti-asthmatic, diuretic and antifungal activities (Mohamed *et al.*, 1993).

The 1,2,4-triazole ring (A: N1, N2, C9, N3 and C8) of the title compound, (I), is approximately planar, with a maximum deviation of 0.003 (7) Å for C8, and forms dihedral angles of 33.68 (17) and 32.86 (21)°, respectively, with the attached methylphenyl and phenyl rings. The dihedral angle between ring *B* (C2–C7) and ring *C* (C10–C15) is 12.1 (3)°. The other ring, *D* (C17–C22), is also essentially planar, with maximum deviations of 0.013 (6) Å for C17 and 0.010 (7) Å for C20. The N1=C8 and N2=C9 bonds display double-bond character, with bond distances of 1.320 (6) and 1.336 (6) Å, respectively. The bond lengths and angles of the triazole ring are comparable to reported values (Fun *et al.*, 1999; Zhu *et al.*, 2000). The C11–C18 and Cl2–C20 bond lengths [1.745 (6) and 1.725 (6) Å, respectively] are in agreement with those found

Figure 1

An *ORTEPIII* (Burnett & Johnson, 1996) view of the title compound, showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

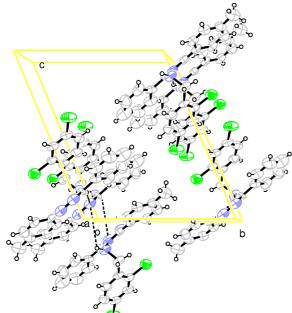


Figure 2

Packing diagram of the structure of (I), viewed along the *a* axis. Hydrogen bonds are shown as dashed lines.

previously (Ocak *et al.*, 2003; Puviarasan *et al.*, 1999). There are five π - π stacking interactions in (I). These involve ring A at (x, y, z) with ring A at (-x, 2 - y, -z), ring B at (x, y, z) with ring C at (-x, 2 - y, -z), ring C at (x, y, z) with ring B at (-x, 2 - y, -z), ring C at (x, y, z) with ring D at (x, y, z), and ring D at (x, y, z) with ring D at (x, y, z), with distances of 3.449 (4), 3.816 (4), 3.816 (4), 3.998 (5) and 3.797 (4) Å, respectively, between the centres of the rings.

Experimental

3-Phenyl-5-*p*-tolyl-4-(2,4-dichlorobenzilideneamino)-4*H*-1,2,4-triazole (0.005 mol) was dissolved in 50 ml of dried methanol and NaBH₄ (0.005 mol) was added in small portions to this solution. The mixture was refluxed for 20 minutes and then allowed to cool. After evaporation at 298–303 K under reduced pressure, the solid residue was washed with cold water. After drying *in vacuo*, the solid product was recrystallized from ethyl acetate, yield 92%, m.p. 465–466 K. IR (KBr): 3242, 1598, 867, 818, 805, 765, 686; ¹H NMR (CDCl₃): δ 2.45 (*s*, 3H, CH₃),3.82 (*d*,2H,CH₂), 5.85 (*t*, 1H, NH), Ar–H; 6.55 (*m*, 1H), 6.95 (*m*, 2H), 7.30 (*d*,2H), 7.45 (*m*, 3H), 7.75 (*m*, 4H), ¹³C NMR (CDCl₃). δ 155.38 (2C), 140.35, 135.01, 131.92, 130.61, 129.98, 129.48 (2C), 129.45, 129.30, 128.68 (2C), 127.96 (2C), 127.82 (2C), 127.07, 126.37, 123.48, 53.15, 21.46, UV [λ_{max} , nm ($\varepsilon \times 10^{-3}$)]: 260 (22.6), 213 (24.6). Analysis: calculated for (C₂₂H₁₈N₄Cl₂); C: 64.56, H:4.43, N:13.69; found: C: 64.75, H:4.41, N:13.58.

Crystal data

$C_{22}H_{18}Cl_2N_4$	Z = 2
$M_r = 409.30$	$D_x = 1.349 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 6.2604 (12)Å	Cell parameters from 4695
b = 11.952 (3) Å	reflections
c = 14.775 (3) Å	$\theta = 1.9-26.7^{\circ}$
$\alpha = 113.152 \ (16)^{\circ}$	$\mu = 0.34 \text{ mm}^{-1}$
$\beta = 91.984 \ (15)^{\circ}$	T = 293 (2) K
$\gamma = 95.864 \ (17)^{\circ}$	Plate, colourless
$V = 1007.8 (4) \text{ Å}^3$	$0.18 \times 0.14 \times 0.07 \text{ mm}$

Data collection

Stoe IPDS-II diffractometer ω scans Absorption correction: by integration (<i>X-RED</i> 32; Stoe & Cie, 2002) $T_{\min} = 0.924, T_{\max} = 0.969$ 13341 measured reflections		3654 independent reflections 1272 reflections with $I > 2\sigma(I)$ $R_{int} = 0.149$ $\theta_{max} = 25.3^{\circ}$ $h = -7 \rightarrow 7$ $k = -14 \rightarrow 14$ $l = -17 \rightarrow 17$	
Refinement			
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.133$ S = 0.93 3654 reflections 253 parameters		H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0303P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e} \text{ Å}^{-3}$	
Table 1 Selected geometric	parameters (Å,		
Cl1-Cl8	1.745 (6)		1.320 (

Cl1-C18	1.745 (6)	N1-C8	1.320 (6)
Cl2-C20	1.725 (6)	N1-N2	1.399 (6)
N3-C8	1.352 (6)	N2-C9	1.336 (6)
N3-C9	1.385 (6)		
N3-N4-C16	112.7 (4)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N4 - H4 \cdots N2^i$	0.86	2.39	3.031 (6)	132
Symmetry code: (i)	r _ 1 v z			

Symmetry code: (i) x - 1, y, z.

The H atoms were positioned geometrically and refined using a riding model, fixing the aromatic C–H distances at 0.93 Å, methylene C–H distances at 0.97 Å, methyl C–H distances at 0.96 Å and N–H distances at 0.86 Å. U_{iso} (H) values were set to $1.2U_{eq}$ ($1.5U_{eq}$ for the methyl group) of the parent atom. The high R_{int} value is due to the poor quality of the crysatl.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1997).

References

- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Desenko, S. M. (1995). Khim. Geterotskil. Soed. pp. 2-24. (In Russian.)
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fun, H.-K., Chinnakali, K., Shao, S., Zhu, D.-R. & You, X. Z. (1999). Acta Cryst. C55, 770–772.
- Mohamed, E. A., El-Deen, I. M., Ismail, M. M. & Mohamed, S. M. (1993). *Indian J. Chem. Sect. B*, **32**, 933–937.
- Ocak, N., Çoruh, U., Kahveci, B., Şaşmaz, S., Ağar E., Vázquez-López, Ezequel, M. & Erdönmez, A. (2003). Acta Cryst. E59, 0750–0752.
- Puviarasan, K., Govindasamy, L., Shanmuga Sundara Raj, S., Velmurugan, D., Jayanthi, G. & Fun, H.-K. (1999). Acta Cryst. C55, 951–953.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Zhu, D.-R., Xu, Y., Liu, Y.-J., Song, Y., Zang, Y. & You, X.-Z. (2000). Acta Cryst. C56, 242–243.